Scharfstoff aus Ingwer mindert üblen Atem

Wie Lebensmittelinhaltsstoffe unser Geschmacksempfinden beeinflussen

Freising 30.07.2018

Der im Ingwer enthaltene Scharfstoff 6-Gingerol stimuliert ein Speichelenzym, das übelriechende Substanzen abbaut. Es sorgt damit für frischen Atem und einen besseren Nachgeschmack. Zitronensäure erhöht dagegen den Natriumionen-Gehalt im Speichel, sodass Salziges weniger salzig wirkt. Um mehr über Lebensmittelinhaltsstoffe herauszufinden, untersuchte ein Team der Technischen Universität München (TUM) und des Leibniz-Instituts für Lebensmittel-Systembiologie deren Effekte auf die im Speichel gelösten Moleküle.

Viele Lebensmittelinhaltsstoffe tragen direkt durch ihren Eigengeschmack, ihren Duft oder ihre Schärfe zum typischen Geschmack von Speisen und Getränken bei. Sie beeinflussen aber auch indirekt über andere, noch weitgehend unbekannte biochemische Mechanismen unser Geschmacksempfinden. Dies hat ein Team um Professor Thomas Hofmann vom Lehrstuhl für Lebensmittelchemie und Molekulare Sensorik nun genauer erforscht.

6-Gingerol sorgt für frischen Atem

Wie die Ergebnisse dieser Untersuchung zeigen, lässt das im Ingwer enthaltene, scharf schmeckende 6-Gingerol innerhalb weniger Sekunden den Spiegel des Enzyms Sulfhydryl-Oxidase 1 im Speichel um das 16-fache ansteigen. Die an jeweils vier Frauen und Männern durchgeführten Speichel- und Atemluftanalysen belegen, dass das Enzym übelriechende schwefelhaltige Verbindungen abbaut. Auf diese Weise ist es in der Lage, den lang anhaltenden Nachgeschmack vieler Lebensmittel wie Kaffee zu vermindern. „Auch unser Atem riecht dadurch besser“, erklärt Studienleiter Prof. Hofmann das Phänomen. Der entdeckte Mechanismus könne zukünftig dazu beitragen, neue Mundpflegemittel zu entwickeln.

Zitronensäure mindert unser Salzempfinden

Zitronensäure beeinflusst dagegen laut der Studie unsere Geschmackswahrnehmung über einen ganz anderen Mechanismus. Wie jeder aus eigener Erfahrung weiß, stimulieren saure Lebensmittel wie zum Beispiel der Saft von Zitronen den Speichelfluss. Proportional zur Speichelmenge erhöht sich dabei auch die Menge der im Speichel gelösten Mineralstoffe.

Laut Prof. Hofmann steigt der Natriumionen-Spiegel nach der Stimulation mit Zitronensäure rasch um das etwa Elffache an. Dieser Effekt lässt uns dann weniger sensitiv auf Kochsalz reagieren. Der Lebensmittelchemiker erklärt dies so: „Kochsalz ist nichts anderes als Natriumchlorid, wobei die Natriumionen beim Menschen für den Salzgeschmack verantwortlich sind. Enthält der Speichel bereits höhere Konzentrationen an Natriumionen, müssen verkostete Proben einen deutlich höheren Salzgehalt aufweisen, um sie vergleichsweise salzig zu empfinden.“ 

Hofmann sieht noch viel Forschungsbedarf, um das komplexe Zusammenspiel zwischen den geschmacksgebenden Molekülsystemen in Lebensmitteln, den biochemischen Prozessen, die im Speichel ablaufen, und unserem Geschmacksempfinden zu verstehen. Mittels eines systembiologischen Ansatzes verfolgt Hofmann das Ziel, eine neue wissenschaftliche Basis für die Produktion von Lebensmitteln zu entwickeln, deren Inhaltsstoff- und Funktionsprofile an den gesundheitlichen und sensorischen Bedürfnissen der Verbraucherinnen und Verbraucher ausgerichtet sind. Hierfür kombinieren er und sein Team Methoden der biomolekularen Grundlagenforschung mit analytischen Hochleistungstechnologien und Methoden der Bioinformatik.

Publikation:

Chemosensate-Induced Modulation of the Salivary Proteome and Metabolome Alters the Sensory Perception of Salt Taste and Odor-Active Thiols. Bader M, Stolle T, Jennerwein M, Hauck J, Sahin B, Hofmann T. J Agric Food Chem. 2018 Jul 13. doi: 10.1021/acs.jafc.8b02772.

Kontakt:

Prof. Thomas Hofmann

Technische Universität München
Lehrstuhl für Lebensmittelchemie und Molekulare Sensorik,
Leibniz-Institut für Lebensmittel-Systembiologie an der TUM
E-Mail: thomas.hofmann(at)tum.de
Telefon: +49 (8161) 71-2902

Das Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München (Leibniz-LSB@TUM) besitzt ein neues, einzigartiges Forschungsprofil. Seine Wissenschaftler kombinieren Methoden der biomolekularen Grundlagenforschung mit Analysemethoden der Bioinformatik und analytischen Hochleistungstechnologien. Ihr Ziel ist es, die komplexen Inhaltsstoffprofile von Rohstoffen bis hin zu den finalen Lebensmittelprodukten zu entschlüsseln und deren Funktion als biologische Wirkmoleküle auf den Menschen aufzuklären. Basierend auf ihrer Forschung entwickelte Produkte sollen dazu beitragen, die Bevölkerung auch in Zukunft nachhaltig und ausreichend mit gesundheitsfördernden, wohlschmeckenden Lebensmitteln zu versorgen. Darüber hinaus sollen die neu gewonnenen wissenschaftlichen Erkenntnisse dazu dienen, personalisierte Ernährungskonzepte zu entwickeln, die zum Beispiel Menschen mit einer Nahrungsmittelunverträglichkeit helfen, ohne dass die Lebensqualität eingeschränkt und die Gesundheit gefährdet ist.

Das Leibniz-LSB@TUM ist ein Mitglied der Leibniz-Gemeinschaft, die 93 selbständige Forschungseinrichtungen verbindet. Ihre Ausrichtung reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Raum- und Sozialwissenschaften bis zu den Geisteswissenschaften. Leibniz-Institute widmen sich gesellschaftlich, ökonomisch und ökologisch relevanten Fragen. Sie betreiben erkenntnis- und anwendungsorientierte Forschung, auch in den übergreifenden Leibniz-Forschungsverbünden, sind oder unterhalten wissenschaftliche Infrastrukturen und bieten forschungsbasierte Dienstleistungen an. Die Leibniz-Gemeinschaft setzt Schwerpunkte im Wissenstransfer, vor allem mit den Leibniz-Forschungsmuseen. Sie berät und informiert Politik, Wissenschaft, Wirtschaft und Öffentlichkeit. Leibniz-Einrichtungen pflegen enge Kooperationen mit den Hochschulen - u.a. in Form der Leibniz-WissenschaftsCampi, mit der Industrie und anderen Partnern im In- und Ausland. Sie unterliegen einem transparenten und unabhängigen Begutachtungsverfahren. Aufgrund ihrer gesamtstaatlichen Bedeutung fördern Bund und Länder die Institute der Leibniz-Gemeinschaft gemeinsam. Die Leibniz-Institute beschäftigen rund 19.100 Personen, darunter 9.900 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei mehr als 1,9 Milliarden Euro.